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A b s t r a c t  

Chem-Simons gauge theory is formulated on three-dimensional 272 orbifolds. The locus of 
singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce 
any correlation function on orbifolds to a sum of more complicated correlation functions in the 
simpler theory on manifolds. Chern-Simons theory on manifolds is known to be related to two- 
dimensional (2D) conformal field theory (CFT) on closed-string surfaces; here it is shown that 
the theory on orbifolds is related to 2D CFT of unoriented closed- and open-string models, i.e. to 
worldsheet orbifold models. In particular, the boundary components of the worldsheet correspond 
to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple 
identification of the open-string spectra, including their Chan-Paton degeneration, in terms of fusing 
Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, 
and some exactly solvable examples are presented. Some of these examples indicate that it is natural 
to think of the orbifold group 7/2 as a part of the gauge group of the Chern-Simons theory, thus 
generalizing the standard definition of gauge theories. 
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1. I n t r o d u c t i o n  

Since the first appearance of  the not ion of"orb i fo lds"  in Thurs ton ' s  1977 lectures on three- 

d imens iona l  topology [1], orbifolds have become  very appeal ing objects for physicists.  This  
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interest was mainly motivated by the fact that orbifold singularities are so mild that strings 
can propagate consistently on orbifold targets, without violating unitarity of the string 

S matrix [2]. 
In critical string theory, orbifolds as targets for string propagation have been generalized 

to more subtle structures. One example is asymmetric orbifolds [3], i.e. two-dimensional 

(2D) conformal field theories (CFTs) in which left-movers and right-movers take values 
in distinct orbifolds. The geometrical structure of these generalizations becomes more in- 

volved: Intriguing subtleties come into play, related in particular to the geometry of fixed 

points and the vacuum degeneracy of twisted sectors [3]. Another generalization is given 
by worldsheet orbifolds [4] (see also [5,6] for related points of view), where string theoretic 
vacua are orbifolded by a symmetry that acts directly on the 2D CFTs describing the vacua. 

It is within this construction that open strings emerge as twisted states of an orbifold. Since 
the orbifold interpretation of open-string models first arose, the technique has been useful 
in several instances where one is interested in the open-string counterparts of closed-string 

constructions (such as target duality [7] or 2D black holes [8]). 
While now we understand fairly well that open strings come from twisted sectors in a 

class of generalized orbifold models, the geometry of this generalization is not yet com- 

pletely understood. Indeed, the target orbifold geometry gets here even more entangled with 
the structure of the conformal field theory itself. On the other hand, one not fully under- 
stood issue in open-string theory is the degeneration of the ground state in the open-string 

sector of a given model. Traditionally, this degeneration is constructed by the Chan-Paton 
mechanism, which eventually leads to the presence of non-abelian Yang-Mills gauge sym- 

metry in the space-time theory. In the Chan-Paton mechanism, the degeneration is caused 
by the somewhat ad hoc procedure of inserting charges of a space-time gauge group (typ- 
ically SO(N)) at the ends of open strings. The seeming arbitrariness in the choice of the 

gauge group is eventually fixed by the check of BRST invariance of the string model, which 
leads to an essentially unique gauge symmetry group for each model. This state of affairs 
seems unsatisfactory, and a deeper explanation of the existence and of the high degree of 

uniqueness of the Chan-Paton mechanism is to be sought. In fact, some hints are offered 
by the orbifold construction of open-string theory: Open strings belong to twisted sectors 
on orbifolds, and one may expect connections between their vacuum degeneracy and some 

sort of generalized fixed-point geometry of the orbifold [4,7]. I will clarify some of these 
subtleties in this paper, making use of a higher-dimensional perspective. 

Let us now leave the stringy intricacies aside and consider something simpler, namely 
a quantum field theory on orbifolds. Doing this, however, one typically encounters incon- 
sistencies: the scattering S matrix of local excitations is not unitary, as particles may leave 
the world through the singular points. There is, however, one important loophole in this 
argument. Were we considering a topological quantum field theory, there would be no local 
excitations, no S matrix, and hence no violation of the S matrix unitarity. Thus, we are free 
to construct a quantum field theory on orbifolds, on condition that the theory has no local 
excitations, i.e. that it is topological. 

In this paper, we will be concerned with Chern-Simons (CS) gauge theory [9] on 3D 
orbifolds. One motivation for this is string theoretical. Below I will argue that CS gauge 



P. Ho?ava/Journal of Geomet~ and Physics 21 (1996) 1-33 3 

theory on 3D 772 orbifolds is related to the theory of  open strings in precisely the same sense 

as CS gauge theory on manifolds is related to the theory of  closed strings (or more precisely, 

to rational CFT on compact oriented surfaces of  closed-string theory). This will give us the 

higher-dimensional perspective of  the puzzles of  open-string theory that I mentioned above. 

The 3D vantage point as a tool explaining various properties of 2D CFT has been advocated 

by Witten [10] in the context of CFTs on closed oriented Riemann surfaces; it is the open- 

string extension of  this ideology that is new in this paper. Another motivation for the present 

work may come from the fact that the CS gauge theory on orbifolds represents an explicit 

example of equivariant topological quantum field theory in the sense of  the axiomatics 

presented in [ 1 1 ]. 

This paper is organized as follows. In Section 2 1 fix notation and review some aspects of  

2D CFT of worldsheet orbifolds and their relation to open strings. In particular, the structure 

of  possible group actions that generate open strings in these orbifolds models is elucidated. 

I also review briefly some basic aspects of  the CS gauge theory on manifolds, in particular 

its connection with CFTs on closed oriented Riemann surfaces. In Section 2.2 it is shown 

how, upon looking for a 3D description of  worldsheet orbifold CFTs, we are led to CS 

gauge theory on 772 orbifolds. This allows us to make some preliminary conjectures about 

the correspondence between the spectra of these two theories. 

These conjectures are confirmed in the remainder of  the paper, where quantization of CS 

gauge theory on orbifolds is analyzed and a set of specific examples is given. In Section 3 

I discuss the quantum CS gauge theory on orbifolds, first for arbitrary connected, simply 

connected gauge group G, and specializing to G = SU(2) afterwards. For any 772 orbifold, 

the locus of  all singular points comprises a link in the underlying topological manifold. 

Inside correlation functions, the singular locus is equivalent to a link of  Wilson lines, which 

allows us to reduce the theory on orbifolds to a related theory on manifolds. This theory 

on manifolds is not necessarily the CS gauge theory with the same gauge group, as will be 

seen in detail in Section 3. The question of framing of  the components of  the singular locus, 

raised by their interpretation as a sum of Wilson lines, is studied briefly in Section 3.2. 

I complete the basic setting for the quantum theory on orbifolds in Section 3.3, where I 

discuss skein theory for the singular locus, and in Section 3.4, where the issue of  observables 

is analyzed. 
In the beginning of  Section 4 I discuss the correspondence between CS gauge theory 

on Z2 orbifolds on the one hand, and 2D CFT of worldsheet orbifolds on the other. Most 

remarkably, the structure of  Chan-Paton factors is elucidated (and fixed uniquely) within 

CS gauge theory in terms of  the algebraic geometry of the singular locus. Sections 4 and 5 

offer a set of basic examples that illustrate the correspondence. In Section 4 I study the 

CFT/CS gauge theory relation for SU(2), while in Section 5 the set of examples is extended 
to c = 1 CFTs (corresponding to G = U(I )  CS gauge theory), and to hoiomorphic orbifold 
CFTs (CS gauge theory with discrete gauge groups). Those worldsheet orbifolds whose 

orbifold group mixes non-trivially the worldsheet parity transformation with a target action 

(the so-called "exotic worldsheet orbifolds") are shown to lead to an unusual form of gauge 
theory in 3D in which the orbifold group Z2 is mixed non-trivially with the CS gauge 
group. Possible implications of  this phenomenon are discussed briefly in Section 5.3. Some 
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elements of orbifold topology and geometry that are needed for the body of the paper are 
gathered in Appendix A; some more involved mathematical aspects of the definition of the 

Lagrangian for CS gauge theory on orbifolds with general gauge groups are deferred to 
Appendix B. 

This paper is a rewritten version of a paper that was published in July 1990 as a Prague 

Institute of Physics preprint [ 12]. Although the results presented here are the same as in [ 12], 
the presentation has been altered. A part of the motivation for this revision (apart from the 

interest in the theory for reasons discussed above) comes from the possible applications this 

theory may have to boundary scattering in 1 + l-dimensional CFT. In fact, this recently very 
active area has a remarkably broad domain of applications, ranging from quantum impurity 

problems (such as the Kondo effect) to dissipative quantum mechanics, to propagation 

in quantum wires, to the Callan-Rubakov effect, to quantum theory of black holes. (See 
[13] and references therein for a review of most of these applications.) In many of these 

cases, the S matrix of the boundary scattering exhibits interesting properties [ 13,14] whose 
explanation, I believe, could come from the correspondence between 2D CFT on surfaces 
with boundaries and 3D CS theory on 7/2 orbifolds as discussed in this paper. In fact, 

this correspondence suggests that the boundary scattering in 2D CFT can be alternatively 
described as an Aharonov-Bohm effect in 3D CS gauge theory. I hope to return to this point 
elsewhere. 

2. Chern-Simons  gauge theory on 3D orbifolds 

CS gauge theory was formulated by Witten in [9] as a gauge theory in three dimensions 
with compact, connected and simply connected gauge group G, and with the Lagrangian 
given by the CS functional: 2 

) S(A)=~ Tr AA d A + - 2 A  3 A A A A  . (2.1) 

M 

The set of observables of the theory is generated by Wilson lines 

WR(C) = TrR P exp f A, (2.2) 
t /  

c 

where R belongs to the finite set of integrable representations of the Kac-Moody algebra 
~ a t  level k, and C is a closed line in M; and by "baryon" configurations first introduced in 
[ 15] and defined using trivalent vertices. At the quantum level, only a finite number of these 
vertices are relevant, corresponding to the information encoded in the structure constants 
of the fusion algebra of the associated WZW model. 

Thus, the natural things to calculate are the correlation functions of the objects just 
mentioned: 

2 Our normalization of S is such that the functional integral is weighted by e i s .  
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WR2 (C2) • • ")M =- f DA Wlcr (CI) WR2 (C2) • • • eiS(A). (C1 ) (2.3) 

A particularly natural way of  computing these correlation functions is the canonical quan- 

tization approach. To any surface S pierced in points zi by Wilson lines in representations 

Ri there corresponds a (finite-dimensional) Hilbert space of quantum states, ~ s ,  R~. Cut- 

ting the 3D manifold M into two parts along an orientable surface £',  we can compute the 

amplitude as an inner product within 7 ~ ,  making use of the fact that the theory satisfies 

the axioms of  topological QFT [16-181. 

The key to the appeal of  CS gauge theory for string physicists lies in the elegant rela- 

tion of the theory to 2D rational CFT [9,19,20] (for a review of 2D CFT, see e.g. 1211). 

This correspondence identifies the Hilbert space of  CS gauge theory canonically quan- 

tized on Z" × ~, where ~" is a closed oriented surface, with the space of  all conformal 

blocks of a rational CFT on Z' [9,19,20]. Since in this paper we are mainly interested 

in the correspondence between CS gauge theory and CFT, and this correspondence is 

well understood only for rational CFTs/compact CS gauge groups, we will restrict our- 

selves to rational CFTs throughout the paper, without mentioning the word "rational" 

explicitly. 

2.1. Conformal field theory of worldsheet orbifolds 

Our central interest throughout this paper is to reproduce 2D CFT of worldsheet orbifolds 

from CS gauge theory. I believe that a short review of  the theory of  worldsheet orbifolds 

may be useful. For other results not gathered here, see [4,7]. 
Let us choose a left-right symmetric CFT. Assume also that there is a discrete group 

acting as a symmetry group on the theory in the target, i.e. exactly as in [6]. The theory is by 

assumption parity-invariant, i.e. there is a symmetry action of the worldsheet transformation 

~ 0 :  (Z, Z) w-~ (e27ri~, e-2~iZ) (2.41 

on the fields of  the theory. This particular action of  the 22 group on the 2D theory (i.e. the 

action that reverses the orientation of the worldsheet) plays a central role in the paper, and 

deserves a special notation; from now on, I wilt denote by 7/~ s this particular 22 group 
generated by X20 (or more precisely, by X2, which is X20 lifted trivially to the fields of the 

2D theory). 
Worldsheet orbifolds are then defined as orbifolds whose orbifold group G combines the 

worldsheet action of  7/~ vs with a target symmetry given by G, i.e. 

G c G x ~_~. (2.5) 

On worldsheet orbifolds, we can get essentially two distinct classes of  twists. First, if G 

contains elements of the form ~" x 1, where 1 is the identity of y~,s and ~ is in (~, then usual 
twisted states are produced, exactly as in traditional (target) orbifold models. The other 

possibility, i.e. the case of  twisting by an element acting non-trivially on the worldsheet by 
Y2, is a bit more intricate. In this case, we can easily observe that the choice of just one 
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twisting element of  G, say g I × 12 (where gl is in G), is not sufficient to fully determine the 

twisted state. If gl × Y2 corresponds to the twist of fields when we go around the cylindrical 

worldsheet in one direction, 

~b(e2~iz, e-2Zriz) = (gl × S'2) • q~(z, 7) ~ gl • ~b(e2Jriz, e-2Zriz), (2.6) 

we have to add another element, say g2 × ~ ,  to determine the twist in the opposite direction: 

q~(e-2~riz, e2:riz) = (g2 × $2) - ~b(Z, ~,) = g2 " ~b(e2Jri~, e-2Jriz). (2.7) 

It is easy to show that (2.6) and (2.7) lead to open-string sectors [4]. 

This unusual structure of  twisted states has a natural explanation if we think of  the state 

twisted by the couple gl × $2, g2 × f2 as an open-string state, with the open-string being 

a 7/2 orbifold of  the closed string. To specify twists on a particular worldsheet Z', we have 

to specify monodromies of  fields on E ,  i.e. a representation of  the first homotopy group of  

Z' in the orbifold group: 

zrl (Z)  --~ G. (2.8) 

The open string is topologically an orbifold Os of the closed string S l by 7/2, Os =- S 1/Y2, 

and its orbifold fundamental group (see [1] for the definition) is D, the infinite dihedral 

group: 

ztl (Os)  = D = 7/2 * 7/2 ~ 7/2 ~ 7/. (2.9) 

Here • denotes the free product of  groups, and ~ is the semi-direct product. The mon- 

odromy of  the open sector corresponds to a representation of  the first homotopy group of 

the open string in the orbifold group: 

7/2 * 7/2 ~ G, (2.10) 

'required to satisfy one obvious geometrical constraint. The fundamental group of  the open 

string, 7/2 * 7/2, is naturally mapped onto the group 7/~s, both of  its 7/2 factors being 
mapped isomorphically to ~vs.  Moreover, the orbifold group G has, as a natural sub- 

group in G × 7/~ vs, a canonical projection onto 7/~ s. The worldsheet orbifold with the 

orbifold group G then admits only those representations (2.10) that complete the dia- 
gram 

7'/2 * 7/2 ~ 7/~ vs +-'- G (2.11) 

to a commutative triangle. If G itself has the structure of a product: 

G = Go × 7/~vs (2.12) 

the corresponding worldsheet orbifold will be referred to as a "standard" worldsheet orb- 
ifold. The complementary case, presumably more interesting, where the worldsheet group 
7/~ vs mixed non-trivially with a target group action, is referred to as an "exotic" worldsheet 
orbifold. 
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At genus g, the partition function of a worldsheet orbifold CFT receives contributions 

from surfaces with h handles, b boundaries and c crosscaps, with l b +  ½c+h - g. On each 

particular surface Sg, the partition function contains the sum over all possible monodromies 
on Zg: 

1 E Zze (a; m), (2.13) 
Zz.~(m) -- IGlU ~,:~,(r~/-~c 

where m are the moduli, zcl (~'g) is the (orbifold) fundamental group of Zg, and Zz~. (or: m ) 

denotes the amplitude calculated with the particular set of monodromies a.  For exotic 
worldsheet orbifolds, the representations of 7rj (Zg)  to be summed over are constrained 

analogously as in (2.11). 7rl (ZTg) is a 2~2 extension of the fundamental group of the double 
of Zg. Hence, there is a natural projection ofTr (Z~,) to 2~ ws, and the allowed monodromies 

complete the following diagram, 

7./.i (~T,g) ~ ~vs  4_ G, (2.14) 

to a commutative triangle. For example, the amplitude on the cylinder reads 

1 
Zf( t )  = IGI ~ Z f ( g l , g 2 ,  h; t ) ,  (2.151 

gl ,g2,h 

where the monodromies are of the form gi ---- gi x ~'2, h ---- ]St x 1, as elements of G C G x 2v~'~. 

and satisfy 

g~ ---- g~ ----1, [gi,h] = 1. (2.16) 

Much information about any theory is encoded in its one-loop amplitudes. In string 
theory, one-loop 3 diagrams correspond to genus-one topologies of the worldsheet; in un- 

oriented open- and closed-string theory, they are given by the torus, Klein bottle, cylinder, 

and Mrbius strip. The amplitudes can be computed in two different pictures [22[. The 
loop-channel picture corresponds to open and closed strings comprising loops of length 

t (with the width of the strings properly normalized). In this picture, the amplitudes can 
be calculated conveniently as traces over corresponding Hilbert spaces of closed and open 
strings. The tree-channel picture corresponds to a cylinder of length [ created from and 
annihilated to the vacuum via boundaries and crosscaps; the moduli t and [ of the two 

channels are related by t = 1/(27) for the Klein bottle and the Mrbius strip, and by t ---- 2/{  

for the cylinder. It is well known [22] that the boundary and crosscap conditions on the 
fields can be translated into the quantum mechanical language by constructing the corre- 
sponding boundary and crosscap states I B), I f ) .  This construction gives a simple recipe 
for calculating amplitudes in the tree channel. In the tree channel, the amplitude corre- 
sponds to the creation of a closed string from the vacuum by (BI or (CI, subsequent free 
closed string propagation, and final annihilation into the vacuum by either IB) or IC). 

3 In the string coupling constant. 
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Comparing these two ways of computing the one-loop amplitudes we get a set of con- 

straints: 

Tropen(e-H"t)= (Ble-14cTIB), 

Tropen ( ~ e  -Hot) _-- ½1 (BIe-HcTIC)+ (Cle-ttCTlB) }, 

Trclosed(S2e-Hct)=(Cle-HcT[C), 

(2.17) 

analogous to the requirements of modular invariance in closed CFT. The factor of one half 
in the middle equation of (2.17) is explained by observing that the 7/2 symmetry that inter- 
changes the two boundaries of the cylinder, or the two crosscaps of the Klein bottle, is to 
be divided out as a part of the gauge group in the full-fledged string theory, but not in CFT 
that we are considering here. 

The one-loop conditions (2.17) pose stringent consistency restrictions on the theory. If 
we calculate amplitudes for a given model, say, in the loop channel, we must check whether 
corresponding boundary and crosscap states exist such that (2.17) be valid. Moreover, any 
relative normalization of the boundary state against the crosscap state, motivated e.g. from 
the BRST invariance in full-fledged string theory or from modular geometry in CFT, fixes 
the normalization of the loop-channel expressions. This normalization then self-consistently 
determines the Chan-Paton degeneration of the open sector of the string spectrum. This 
is an outline of how the Chan-Paton symmetry in open strings is controlled by modular 
geometry. 

2.2. A thickening of the open string 

In worldsheet orbifold models, left- and right-movers are coupled to each other through 
boundaries and/or non-orientability of the worldsheet. To find a correspondence of this 
'coupling between left- and right-movers in the CS gauge theory, we have to identify how 
CFT with both left- and right sectors enters CS gauge theory. In the case of CFTs on closed 
oriented surfaces, an answer to this question was conjectured by Witten [23] and further 
developed by Moore et al. [19,20], Kogan [24], and Kogan and Carlip [25] (see also [26]). 
Their results can be simply summarized as follows. 

Let us quantize the theory canonically on C × ~, with C a cylinder [20]. Working in the 
axial gauge A0 = 0, we must first satisfy the constraint that requires the space-like part of 
the curvature to be zero, F = 0. This is easily solved to give (the tildes over d and A denote 
the space-like parts of d and A): 

,~ = _ ~  ~ - l  U = U e x p ( i ~ b ) ,  (2.18) 

where U is a single-valued map from C to •, and ~. measures the holonomy around the 
non-contractible loop on the cylinder. Inserting this solution into the Lagrangian (2.1), we 
can reduce it to an effective Lagrangian for U and ~.: 
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a~ () 
Z2 

C (III) 
Fig. 1. (a) The 7/2 symmetry of the cylinder C that defines the thickened open string (-Qc as (Qc ~ C/7/2. 
(b) The thickened open string Oc. The 272 singular points PI and P2 are the only singular points of Oc. 

S ( U , ~ . ) = ~ -  Tr U-lOeUU-lOtU d4~dt 

aCxR 

1 f TrZ(t)(U-IOtU) d49dt 
a C x ~  

k 
+ l~f f  f T r ( U - l d U )  3 

Cx[R 

(2.19) 

The Hilbert space 7-/c resulting from the quantization of this phase space has the structure 

of 

H = ( ~  [~bx] ® [¢x], (2.20) 
), 

where k now belongs to the set ofintegrable representations of the Kac-Moody group G, and 
[ ~ ]  denote the representations. This Hilbert space exactly corresponds [20] to the Hilbert 

space of the WZW model with ~ as its Kac-Moody symmetry group, and with a diagonal 
modular invariant. Within this correspondence, gauge invariant degrees of freedom living 

at one component of 0C correspond to the left-movers, while the second component of 0C 
yields the right-movers of the WZW CFT. Thus, the cylinder C = S 1 × [0, 1 ] is the manifold 

that represents the thickening of the closed string in CS theory, and similarly, Z × [0, 1] is 

the 3D thickening of closed oriented surface Z.  
Now we will look for an analogous 3D setting for open strings. In Section 2.1 we have 

seen in an outline how open strings emerge in twisted sectors of worldsheet orbifold models. 
Now I will argue that the orbifold construction extends also to the 3D CS theory: We will see 

that a natural thickening of the open string is a 2D Z2 orbifold with a boundary; I will also 
construct the thickened version of surfaces with boundaries and/or crosscaps, as particular 

3D Z2 orbifolds. The final check of the proposed correspondence then comes from the fact 
that it reproduces the known structure of CFT on surfaces with boundaries and/or crosscaps 
(including such subtleties as the vacuum degeneration of the open string spectrum). 

With this motivation in mind, we will proceed by studying CS gauge theory on Y2 
orbifolds. To be a symmetry of the CS Lagrangian (2.1), the orbifold group 772 must act 
on 3D "space-times" by orientation-preserving diffeomorphisms. A particularly important 
class of such actions are products of ~ (with the trivial 7/2 action) and a 2D manifold Z 
with an orientation-preserving involution. In particular, we may take Z = C, the thickened 
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Fig. 2. The correspondence between the orbifold Oc and the open string (Qs. The singular points of (-Qc 
correspond to the boundary points of the open string, while the boundary of (-Qc corresponds to the interior 
of the open string worldsheet. 

Fig. 3. The first homotopy group of OC, ~! (Oc) = 7/2 * 7/2 ~ 7/2 ~ 7/. The picture shows the generators 
Yl, }'2 of the 7/2 components in 7/2 * 7/2, as well as their product y that generates the normal subgroup 7/in 
7/2 ~ 7/. 

closed string, and consider the 7/2 action that interchanges the boundaries of  C as in Fig. 1 a. 

The resulting 2D orbifold, denoted by O c  throughout this paper, is the proposed thickened 

version of the open string (cf. Fig. 2). 

One fact that supports this correspondence is the isomorphism between the first homotopy 

groups of the thickened open string (-9c and the open string (.gs, which are both isomorphic to 

772 * 7/2. For the thickened open string, the structure of the first homotopy group is indicated 

in Fig. 3. In particular, the generators ofTrl (Os)  that correspond to the "boundary twists" on 
i 

the open string (cf. (2.6) and (2.7)) now correspond to the non-contractible circles wrapped 

around the singular points of  C9c. (Actually, the "correspondence" of  Fig. 2 is a homotopy 

equivalence in the corresponding category of  orbifolds; cf. Appendix A.) 

We have seen that any closed oriented worldsheet 22 of  closed-string theory can be 

naturally thickened to a three-manifold M = 27 x [0, 1]. As for surfaces of  worldsheet 

orbifold models, i.e. surfaces with boundaries and/or crosscaps, we can construct their 

natural thickening as follows. Let 22 be a surface with boundaries and/or crosscaps, and 27 
its oriented double with empty boundary. Denote by I the defining involution on 27, i.e. 
22 = 22/1. The corresponding thickening of  22 is then 

O f  = (22 x [0, 1]) /I ,  (2.21) 

where 1 acts on t E [0, 1] via t --+ 1 - t. O,r is an orbifold with boundary, 0 0 £  being 

isomorphic to one component of  22. Two examples of  such thickened open string diagrams 
are shown in Fig. 4. 

At the quantum level, there is a correspondence between the partition function of  the two- 
dimensional WZW model on a closed oriented surface 22, and the (transition) amplitude of  
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Fig. 4. The thickened versions of (a) the annulus, and (b) the M6bius strip diagrams. The thick lines represent 
the singular loci of the orbifolds; the shaded 2D sections are isomorphic to the thickened open string (9(.. 

the CS gauge theory on M, summed up over the natural basis of ~ z :  

Z Z  = Z hijtI'/i ~ tlY D E ~'~r ~ ~2~. (2.22) 

The aforementioned correspondence between 2D surfaces of open string-theory and their 

3D orbifold thickenings leads to an open-string counterpart of (2.22), 

Z r : Eai t l - / i  E ~[~. (2.23) 

Here Z" is a surface with at least one boundary or crosscap, and Z' denotes its double. 

This picture allows us to make, already at this stage, some preliminary conjectures 

about the relation between 3D CS gauge theory on orbifolds and 2D CFT of open strings. 

The closed string, which is topologically a circle, can be obtained from its thickening 

if the boundaries of the thickening approach each other. In the case of open strings, 

the analogous procedure of shrinking the thickening Oc to the open string is shown in 

Fig. 2. The boundary points of the string correspond to the two points in the singular lo- 

cus of the thickening. We thus expect that the structure of Chan-Paton factors is related 

to the geometry of the singular locus. On the other hand, the bulk degrees of freedom 

on the worldsheet of the open string are expected to correspond to gauge-invariant de- 

grees of freedom at the boundary of the thickening. These expectations will be confirmed 

in Section 3. 

3. Quantization of CS gauge theory on orbifolds 

We have seen in Section 2 that the natural setting for the CS counterpart of 2D CFT on 

surfaces with boundaries and crosscaps is the theory on three-dimensional Y2 orbifolds, 
and we have made several preliminary conjectures about the correspondence between these 

two theories. In order to substantiate these expectations, we must quantize the CS theory 
on orbifolds and compare the outcome to the structure of 2D CFT of worldsheet orbifolds. 

As a first step towards the definition of the quantum CS gauge theory with gauge group 
G on an orbifold, we have to specify a Lagrangian for connections on any principal G- 

bundle over arbitrary orbifold (9. One is tempted to define, in analogy with string theory 
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on orbifolds, the Lagrangian on an orbifold O for a given G-bundle E via the Lagrangian 
of CS gauge theory on the doubling O of O: 

2S(A) = S(A)  = ~ Tr AA dA + ~-A A A A A  . (3.1) 

Here A is the pullback of the connection A from (.9 to the doubling bundle E over the 
doubling manifold O. The formula is well defined at least for compact, connected, simply 
connected gauge groups, E being in this case the trivial principal bundle over the manifold 
O. Nevertheless, this definition is still incomplete, since we have to resolve the ambiguity 
that has emerged because we have defined a multiple of S(A)  in (3.1), and we have to 
resolve this ambiguity for any orbifold in a way compatible with factorization (see [18] for 
a thorough discussion of this argument in a slightly different context). For general gauge 
groups, this requires techniques of equivariant cohomology of classifying spaces, and I.refer 
the reader to Appendix B, where the general answer is presented. 

In order to avoid technical complications, I will now focus on ~ compact, connected, and 
simply connected. The classical phase space to be canonically quantized on a Hamiltonian 
slice 27 of a 3D "space-time", is given by 

79(~7) = Hom(zrl(Z), G) × Maps(027, ~). (3.2) 

One basic building block of this phase space is the space of possible holonomies around a 
singular point. Ignoring temporarily the overall conjugation by ~, it is given by all repre- 
sentations of 712 in G, i.e. the submanifold G(2) in ~7 of those elements whose square is one. 
The phase space G(2) pierces a fixed maximal torus 7- in a finite set T(2), and in turn, G(2) can 
be recovered from this finite set by conjugating T(2) by G. Thus, G(2) can be decomposed 
into conjugacy classes weZo) -1 classified by e z c 7-(2). 

Let us specialize for simplicity to X' = OD, the disk with one singular point inside, 
and define the CS Lagrangian on the unconstrained phase space, restricting ourselves to 
the holonomies that are conjugated to a particular element e z of T(2). The general case can 
be treated similarly. Respecting all the required symmetries, we get the Lagrangian that 
combines the usual CS Lagrangian with the coadjoint orbit Lagrangian for the holonomies 
around the singular point: 

S(A, w) = ~ff T r ( A A  d A +  2A A A AA) 

Oo 

f dt Tr (~.w - l  (t) (Ot + AO) w(t)), (3.3) + 

with the notation of (3.1), and o) parametrizing the component of G(2) consisting of the 
elements conjugated to e ~. This Lagrangian is anomalous unless )~ is a weight [20]. This 
condition poses restrictions on possible values of k (cf. [20]); I will limit the discussion 
henceforth to the non-anomalous k's. Consequently, quantization of the corresponding ef- 
fective Lagrangian on the constrained phase space 79 leads to the Hilbert space consisting 
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of irreducible representations [~b;v] of  the loop group £G, with ~. being from "T(2  ) . In this 

section I will only discuss the simplest case of  G = SU(2), unless stated otherwise. 

On our favorite orbifold Oc, the reduced phase space 79 consists of  the product of  two 

copies of ~(2), times the space of  gauge-invariant degrees of  freedom that survive at the 

boundary. In the case of  G = SU(2), the set of  holonomies allowed around the singular 

points reduces to two points, corresponding to the representations of  spin 0 and l k  at level 

k, which is then necessarily even. Quantization of the corresponding phase space leads to 

the Hilbert space 

7~=2 {[~o]~[~k/21}. (3.4) 

According to the correspondence between CS gauge theory and two-dimensional CFT of 

open strings, we expect this space to represent the Hilbert space of  open string states of a 

worldsheet orbifold of  the SU(2) W Z W  model. I will demonstrate that this is indeed the 

case in Section 4.1, where I identify explicitly the CFT that corresponds to (3.4). 

3.1. The singular locus as a link of Wilson lines 

We have seen in (3.3) that the points in which the singular locus pierces a chosen Hamilto- 

nian slice effectively behave as sources of  curvature for the CS gauge field. More precisely, 

the form of the Lagrangian (3.3) indicates that the singular locus is effectively equivalent 

in the quantum theory to a sum of Wilson lines in some particular representations of  the 

gauge group. This simple but important fact allows us to reduce the theory on orbifolds to 

a theory on manifolds, trading the singular locus for a link of  Wilson lines. 

Another argument that will allow us to see the equivalence, follows closely the reasoning 

of [15]. Consider a connected component of  the singular locus in a 3D orbifold M, and 
denote it by ~. It can be surrounded by a 2D torus T, which divides M into two disconnected 

parts, i.e. a solid torus with g inside it, and the remnant. Whatever happens inside the solid 

torus, defines a vector from ~T .  A natural basis in 7-(T is given by functional integrals over 

the solid torus with all the allowed Wilson lines replacing ~. The vector that describes the 

functional integral with the component e of  the singular locus inside the solid torus can be 

expanded in this basis, 

= Z CRi WRi (e~ (3.5) 
Ri 

where CR~ is a set of  complex numbers. Effectively, all information about the presence of  

orbifold singularities is now stored in these numbers. 
We have just argued that any connected component e of  the singular locus on an orbifold 

69 can be represented as a sum over Wilson lines with the topology of  e. As a result of this 

equivalence, the theory on orbifolds is reduced to the "parent" theory on manifolds, 4 as 

4 In some more complicated cases, discussed in Sections 4.2 and 5, the gauge group of the "parent" theory 
may differ from G by a discrete factor. 
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follows. Using (3.5), the correlation function of  an arbitrary collection of  physical observ- 

ables q~ on O can be calculated as a sum over more complicated correlation functions on 

the underlying manifold X o ,  5 with the singular locus traded for a link of  specific Wilson 

lines: 

- Z CR~"'''CR~'~'(cl) W R I " ( g ' ) ' ' ' W R ~  ~'(£s))xo" (3.6) 
R II ) R! s) 

i . . . .  ' j 

(Here ¢~ = 1 . . . . .  s counts the connected components e,~ of  the singular locus, and X o  is 

the underlying manifold of  O.) In particular, the partition function of  the CS gauge theory 

on the orbifold is equivalent to a correlation function of  the usual CS gauge theory on the 

underlying manifold: 

~ t X o  

= -  %1" "cR? ' WR¢"(e')Ix°" (3.7) 

These two formulas represent one of  the central points of  this paper. They relate the corre- 

lation function in a theory on orbifolds (which we a priori do not know how to calculate) to 

a sum of  more complicated correlation functions in the simpler theory on manifolds (which 

we do know how to calculate). 

To establish the correspondence between the theory on orbifolds and the theory on the 

underlying manifolds, it now only remains to determine the cRi's of (3.5). To this aim let us 

consider the theory on an orbifold which is topologically a solid toms, with the singular locus 

isomorphic to the generator of  the fundamental group. This functional integral determines 

a state from the Hilbert  space on the torus. We can measure this state by the following 

procedure. Let us take another copy of  the solid toms, now with an arbitrary Wilson line 

WR (b) replacing g, with b ~ g topologically, and glue these two solid tori together, so as to 

obtain S 2 x S l . The functional integral of  the resulting object is easily calculable as a trace 

over the physical  Hilbert space of  the twice punctured sphere. On the other hand, the same 

amplitude is equal to the inner product of  the states that result from functional integrals 

over the solid tori before gluing. This leads to the following formula, which allows one to 

determine C Ri " 

z ( s  2 × s ' ,  R, e) = oR, (vR,, (3.8) 
Ri 

5 XO is topologically the same as O but with orbifold singularities smoothed out. We are safe here, at least 
if X 0 is a topological manifold, because every 3D topological manifold admits exactly one differentiable 
structure. 
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Here ( , )  denotes the inner product in 7-/T, and R i a re  the representations carried by the 

singular locus. This completes the arguments on the equivalence (3.5) between the singular 

locus and a sum of Wilson lines with the same topology. As a sample application of this 
equivalence, note that each component of the singular locus in the SU(2) theory is equivalent 
to Wo(C) + Wk/2(C). 

3.2. Framing of the singular locus 

It is known that in quantum CS gauge theory, Wilson lines need framing. In particular, the 

singular locus, being equivalent to a sum of links of Wilson lines, may need framing. One 

may thus wonder how the statements of the previous paragraph interfere with this additional 
structure needed for a well-defined quantum theory. 

First of all, note that the singular locus of any orbifold required for the correspondence 

to 2D CFT can be canonically framed. We have seen in Section 2.2 that the orbilolds 
representing the thickening of an open-string surface are of the form 

(..9 = (Z  × [0, 1])/7/2. (3.9) 

Such an orbifold can indeed be retracted uniquely (up to homotopy) to the 2D surface Z/7/2. 
Thus, we can pick an arbitrary imbedding of the 2D surface Z/7/2 into O, with boundaries 
mapped to the singular locus of CO. This retraction gives a unique and natural framing to 
the singular locus, simply by demanding that the vectors that frame the singular locus are 

tangent to the image of Z/7/2, and point inward. 
Since the canonical flaming of the singular locus always exists (and is unique) lor the 

orbifolds that represent the thickened open-string surfaces, we need not worry about framing 
in the applications to 2D CFT on surfaces with boundaries and/or crosscaps; we would still 

need something more, however, were we interested in the full-fledged CS gauge theory on 
general 7/2 orbifolds. Results of [27], which indicate that there might be a preferred way 
how to frame a three-manifold, are particularly interesting in this context. Alternatively, we 

could restrict ourselves to those models that do not require framing of the singular locus, 

i.e. do not require framing of the particular set of Wilson lines that effectively represent 
the singular locus in the correlation functions according to (3,5). This restriction would 

impose an additional condition on the CS coupling constant k. For example, in the case of 
G = SU(2) that we have been focusing on in this section, the singular locus carries the 
representations with spin 0 or ½k. If the framing of a Wilson line We(C) is shifted by a 
t-fold twist, the corresponding state is multiplied by e 2zrihRt, where he  is the conformal 

weight of the primary field corresponding to R. Conformal weights of the primaries q~i ol' 

the SU(2) WZW model are 

hj = j ( j  + 1)/(k +2 ) ;  (3.10) 

hence, the conformal weight of the non-trivial primary q~/2 carried by the singular locus of 
the SU(2) theory equals hk/2 = ¼k. Insisting on the integrality of the conformal weights 
of the primaries that correspond to the singular locus, we get the restriction k = 0 (mod 4) 
on the coupling constant of the CS gauge theory on orbifolds. 
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3.3. Skein theory for the singular locus 

One of the most appealing and important properties of CS correlation functions of Wilson 
lines is their calculability by (un)braiding the Wilson lines using skein theory. To a given 
two-dimensional surface I;' with p punctures and representations Ri, i ---- 1 . . . . .  p inserted 
in them, CS gauge theory assigns the Hilbert space 7-/s,Ri of physical states, which is n- 
dimensional. The skein relations are linear dependence relations, satisfied by any set of 
n + 1 vectors of this vector space. 

This braiding procedure plays an interesting role in the comparison with CFTs of world- 
sheet orbifolds. Indeed, the only difference between the thickened cylinder (Fig. 4a) and 
the thickened M6bius strip (Fig. 4b) is in braiding of the singular locus. More explicitly, 
the functional integral over these two topologies, with the particular labeling of the Wilson 
lines, gives the partition functions of the associated 2D CFT on the worldsheet of the topol- 
ogy of the cylinder and M6bius strip respectively, Of and t/-tMS , which are elements of the 
Hilbert space of the CS gauge theory on the torus. Using the results of Sections 2 and 3.2, 
we have 

q ' c=  

and 

Z (WR(e)WR'(et))solid torus 
R,R'6{O,k/2} 

(3.11) 

IffMS= Z (WR (~))solid torus" (3.12) 
Re/0,k/2} 

Here e, e', ffdenote components of the singular loci as shown in Fig. 4. The only difference 
between the two orbifolds can be localized within a small two-sphere, pierced four times 
by the singular locus. Cutting out the ball surrounded by this two-sphere, we get an orbifold 
(.9 whose boundary 3M is isomorphic to the disconnected sum of the torus and the four 
punctured sphere. Then we can compute the tPc and qJMS of (3.11) and (3.12) as inner 
products in the Hilbert space of the four-times punctured sphere Hs z: 

tPC = (u, v), if'MS = (u, V'), (3.13) 

where u c ~s2 represents the functional integral over O, and v, v' are the functional 
integrals over the three-balls with Wilson lines as shown in Fig. 5b. 

Let us now restrict ourselves to ~ = SU(2) with k = 0 (mod 4), for which we have seen 
in Section 3.2 that the theory is independent of framing of the singular locus. The singular 

locus is equivalent to a sum of Wilson lines with R, R' ~ 10, ½k[. For such R, R', the 
/ J 

corresponding Hilbert space is one-dimensional, as can be easily inferred from the fusion 
rules of the SU(2) WZW model [21]: 

j=min(jl+J2,k Jl-J2) 
Y~ [4~j], j , ,  j2, j 6 "10, 1 . . . .  ½k]." (3.14) [~jl] x [4~j21 

J=]Jl--J2] t J 

Thus, any two states of the physical Hilbert space are linearly dependent. In particular, with 
our restriction on k, the vectors given by the functional integrals over the three-dimensional 
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a~ 

b: 

Fig. 5. Skein relations of the singular locus. R and R' are the SU(2) representations that can be carried by 
the singular locus, i.e. their spins are either 0 or lk ,  and k is assumed to satisfy k = 0 (rood 4). b( 
Fig. 6. The topology of observables in a hamiltonian slice of the thickened open string. The Wilson line 
denoted by the dashed line corresponds to (a) the thickened closed string vertex operator, (b) the thickened 
open string vertex operator. 

balls with the Wilson lines as in Fig. 5a are equal to each other, the same being true of  

the amplitudes in Fig. 5b. As a consequence, the action of  the braid group on the singular 

points of  Oc reduces to the action of  the permutation group, and any multiple twist can be 

trivially unbraided. 

3.4. Observables 

Since the CS gauge theory on orbifolds can be effectively reduced to a CS gauge theory on 

manifolds, observables on orbifolds are of precisely the same structure as those on manifolds 

(with an obvious orbifold-like projection included). In particular, the Wilson lines indicated 

in Fig. 6 are natural candidates for observables. Note that, using the equivalence (3.6) of 

the singular locus and a link of  Wilson lines, we can interpret the observable V of  Fig. 6b 
as a trivalent graph, with the remaining two legs corresponding to the singular locus that 

pierces the hamiltonian slice at the endpoint of  V. 
In the closed-string case, CS counterparts of  2D vertex operators were identified by 

Kogan and Carlip [24,25] with the Wilson lines going from one boundary of  a thickened 
worldsheet Z' × [0, 1 ] to the other (possibly with some gauge invariant quantities attached 

at their ends). Indeed, these Wilson lines transform under a gauge transformation g as the 
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Fig. 7. The 3D orbifold that represents the thickened version of the open-string interaction. 

W 

V 
Fig. 8. The thickened version of the open-string/closed string interaction. 

product of  one left-moving and one right-moving Kac-Moody primary of  the WZW CFF 

model: 

W ~ g ( x ) . W . g ( y )  1, (3.15) 

where x and y are the endpoints of  the Wilson line. 

The thickened version of  the open-string three-vertex is the "solid pant" orbifold of Fig. 7. 

It represents an interpolation between three thickened open strings fOG. (To get rid of  the 

7/2 odd states in the open-string sector, we should sum over all possible permutations of 

the ends of  single components of  the singular locus.) With the use of  (3.7), the singular 

locus can be traded for a sum of Wilson lines, hence the transition amplitudes between two- 

dimensional orbifolds are in principle computable as a non-trivial scattering problem on the 

underlying manifolds! This is an interesting CS incarnation of the old idea that Chan-Paton 

charges at the ends of strings represent dynamical particles (quarks of  the old dual models). 

The necessity of  summation over all permutations in this scattering process resembles the 

analogous statements in the gravitational scattering in 2 + 1 dimensions [28]. 

As for the closed string/open string interaction, its thickened version is shown in Fig. 8. At 
the level of  fundamental groups, the interaction is equivalent to an action of  the fundamental 
group of the thickened closed string C on the fundamental group of  the thickened open string 

fOc. To see this more explicitly, let us denote by /~ the generator of  Jrj (C) = Y, and by 

Yl, Y2 (respectively ~,(, y~) generators of the two ~2 components of  zq (fOc) = 7/2 * 772 

before (respectively after) the interaction. Then the interaction acts on zr] (fOc) as follows: 

(Yl, Y2) ~ (Y~, Y~) ---- (Y1,/- 'Y2F'-I). (3.16) 

With this picture of  thickened string interactions now at hand, it is not too complicated to 
see that the infinitesimal versions of  the interactions shown in Figs. 7 and 8 are the Wilson 
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lines of Fig 6. In particular, the open-string emission from an open string is represented in 

CS gauge theory by a trivalent-graph observable. 

4. The Chern-Simons/CFT correspondence and first examples 

The relation between CS gauge theory on orbifolds and CFT of worldsheet orbifolds 

leads to a surprisingly simple prescription for the open-string spectrum of a 2D worldsheet 

orbifold CFT, including its Chan-Paton degeneration, once the corresponding CS gauge 

group is known. 

The prescription can be briefly sketched as follows. Given a worldsheet orbifold CFT, 

consider first the restriction of the theory to closed oriented surfaces. Next, identify the 

CS gauge group that is associated with this "parent" CFT on closed oriented surfaces, in 

the classification of [19]. To get from this "parent" CS theory on manifolds to a theory on 

Y2 orbifolds, we must identify which class of holonomies is allowed around the singular 

locus. To this goal, in analogy with the quantization of (3.3), we identify the primaries 

that correspond to those elements of the gauge group that square to one. Let us denote the 

set of these primaries by 7~ = {qS,., r = 1 . . . . .  N}. These primaries are examples of the 

boundary states in the 2D model on surfaces with boundaries and/or crosscaps, described 

first by Cardy in 1291 (cf. the states denoted by If) in 129, Eq. (21)1). To obtain the spectrum 
of the open sector, we label each of the two singular points of the thickened open string 

by a representation from ~ .  Fusion rules of these representations give the bulk part of 

the open-string spectrum, while the structure constants of the fusion algebra determine 

the Chan-Paton degeneration of the states. The whole spectrum results from all possible 

combinations of the labeling of the singular points by elements of ~ .  

In this form, the correspondence between CS gauge theories on Y2 orbifolds and CFTs of 

worldsheet orbifolds clearly does not cover all possible CFTs. Generically, we can associate 

several different sets of boundary and crosscap conditions to a given CFT on closed oriented 

surfaces; yet, the correspondence that we have just outlined associates one preferred set of 

boundary and crosscap conditions to each CS gauge group (and hence, to the corresponding 

CFT on closed oriented surfaces). The question is whether the other types of boundary 

conditions can also be incorporated into the scheme. This question will be answered in the 

affirmative later in the paper, after we learn more by studying several explicit examples of 

the correspondence between the CS gauge theory on 2~2 orbifolds and CFT on surfaces with 

boundaries and/or crosscaps. It turns out that the general scheme will require an extension 

of the standard definition of CS gauge theory that will incorporate the orbifold group Z2 

into the gauge group. 

4.1. SU(2) CS gauge theory, and worldsheet orbifolds 

I conjectured in the beginning of Section 3 that the Hilbert space of the SU(2) CS gauge 
theory on the thickened open string (as given by (3.4)) should correspond to the open-string 

sector of a 2D CFT. Now I will identify this two-dimensional CFT. 
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Inspired by (3.4), we are looking for a worldsheet orbifold of the SU(2) WZW model 
that has only two primaries in the twisted (i.e. open) part of the spectrum (modulo a pos- 
sible Chan-Paton degeneracy), namely q~0 -= 1 and q~k/2. Theory of open strings on group 
manifolds was studied by Ishibashi in [30]. In fact, Ishibashi constructed one particular 
SU(2)-model for each k even. These models are examples of worldsheet orbifold models 
as discussed in Section 2.1. Ishibashi starts with a diagonal modular invariant, and takes for 
the projection operator in the closed sector the parity operator acting in the obvious way on 
the Kac-Moody algebra, and trivially on the basis of primary states: 

= Z ,  IJ ® 7)= lY ® J). (4.1) 

This definition specifies uniquely the Klein bottle amplitude of the model, which in the loop 
channel reads 

Zvd3(t) = Z Xj(2i/). (4.2) 
jc(1/2)7/k 

Using the form of the S matrix for the SU(2) WZW model: 

ct = ~ sin (2j + 1)(2/+ 1)Jr (4.3) oj 
k + 2  

we can transform the amplitude to the tree channel, 

ZKB (t') Z SJxi(2it) Z k ~  (2j + ,)Jr = = cot 2(k + 2) Xj (it), (4.4) 
j,IE(I/2)2k J~-k/2 

and infer from these formulas the form of the full crosscap state of the model: 

IC} = Z c°tl/2 [C, j) ,  (4.5) 
jerk~2 

where IC, j)  are normalized so as to give the corresponding character, 

(C, Jl C, l) = ~ l X j .  (4.6) 

The open-string part of the spectrum is then required to satisfy constraints (2.17) that 
embody modular properties of the model. Ref. [30] shows that open strings carrying each 
of the integer-spin integrable representations at level k is a good choice. With the projection 
operator in the open sector acting trivially on the primary states, X2 I J) = ]J), the following 
amplitudes can be computed: 

Z c ( t ) =  Z x j ( l i t ) =  Z SJx/(ii) 
jE~-k/2  jET/k/2,1c(l/2)7/k 

= ~  Z s i n - ' ( ( 2 k + l ) r r  ) 
je77k/2 -~ 2 Xj (i?), 

ZMS(t) = Z XJ (1 + l i t)  = Z M~Xt(½ + ii) (4.7) 
J ~ Y-k~2 j ~77k/2,1E ½/Tk 
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where the M6bius strip diagram is transformed to the tree channel by the modular transfor- 
mation M acting on the characters as 

2 (2j + 1)(2i + l)7r 
_ _ s i n  f o r i + j  ~ Z, 

Mj = v/k+ 2 2(k + 2) (4.8) 

0 f o r i + j  E Y+½. 

These amplitudes satisfy requirements (2.17), the boundary state of this model being 

~ k ~  ( ( 2 d +  l):rr ) IB)= Z 4 2 s in - l / z \  ~ + 2 )  IB, j), (4.9) 
je77k/2 

with the states IB, j) defined analogously as the IC, j). 
Ishibashi's model was obtained as an orbifold model using the 2~2 action of (4.1) on the 

conventional SU(2) WZW model. Nevertheless, this worldsheet orbifold model is not equiv- 
alent to the model we are searching for, since its open-string spectrum does not correspond 
to the spectrum of (3.4) obtained in the SU(2) CS gauge theory on orbifolds. 

The 2D CFT that does correspond to the SU(2) CS gauge theory on orbifolds as discussed 
in Section 3 can be identified by inverting the strategy that we used above when we derived 
the cylinder and M6bius strip amplitudes of Ishibashi's model. Starting from the "Chern- 
Simons inspired" spectrum (3.4), after some algebra we obtain the one-loop amplitudes 
corresponding to this spectrum: 

Zc(t) = 2Xo(t)+ 2Zk/2 ( l i t )  = 2  Z S~x/(it) 
je{O,k/2}de( I/2)Z~ 

=4~k-- ~ Z sin (2j + 1);r k + 2 Xj (it'), 
jE77k/2 

ZMs(t)=2Z0(l+l i t)  -= Z Mo/Zi({+i~') (4.10) 
le ½Yk 

2 ~ /  s i n ( ( 2 j + l ) ; r )  Xj(I + it-). 
- k'/-k=42 J 2 z(k + 2) 

The boundary and crosscap states corresponding to these amplitudes are easily found 
to be: 

IB)= 
J EZk/2 

j eYk/2 

4 2 1)Zr'~ 2 ~k----~ sinl/2( (2J + [B, j), 

~ k ~ t a n l / 2 (  (2J-+-l)rr ~ lC, j), 
\ 2 (k+2)  ,/ 

(4.11) 
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which leads to the Klein bottle amplitude: 

(2j + l)rr 
ZKB = Z tan 2(k + 2) xj(i{) 

je27k/2 

(2j + l)rr 
= k + 2  ~z'-' tan g (~Xl_2it) 

jEgk/z,lE(1/2)~-k 2(k + 2) 

= Z (-l)2Jxj(2it)" (4.12) 
jc(1/2)Zk 

The remarkable simplification of the last formula makes the interpretation of the CS inspired 
2D model obvious. The Klein bottle diagram corresponds to projecting the SU(2) WZW 
model by a slight modification of the 22 orbifold transformation used in the worldsheet 
orbifold interpretation of Ishibashi's model above. Namely, we now supplement the orbifold 
772 action leading to Ishibashi's model, by the action of the non-trivial central element of 
SU(2): 

s2sys2' s2lj®7)=(-1)zslT®j ). (4.13) 

Hence, the 2D model that we have obtained from the SU(2) CS gauge theory can be 
interpreted as a worldsheet orbifold model, in which the simplest orbifold action of (4.1) is 
combined with the target action g ~ - g  on SU(2), a 7/2 mapping known from the context 
of extended chiral algebras [ 19]. 

The one-loop amplitudes of any worldsheet orbifold model should satisfy the consistency 
conditions (2.17). Possibilities for given amplitudes to satisfy these constraints depend on the 
(Cfian-Paton) degeneration of open sectors of the model. Thus, in the model that corresponds 
to (4.13) and (3.4), each of the two components of the singular locus is equivalent to 
Wo(g.) + Wk/z(g), and fusion of the two components of the singular locus produces both 
components of the open-string Hilbert space, [~b0] and [q~k/2], in duplicate. This degeneration 
of the open-string spectrum is the correct degeneration required in order to obey (2.17). We 
have thus confirmed that in this specific example, the correspondence between CS gauge 
theory and 2D worldsheet orbifolds does indeed allow one to identify the proper Chan-Paton 
degeneration of the open sector of the theory. 

4.2. Extended chiral algebras and 3D orbifolds 

We have now identified the CFT that corresponds to the SU(2) CS gauge theory on 
orbifolds. This CFT is actually a modification of the Ishibashi model of open-strings on the 
SU(2) group manifold. This makes us wonder whether Ishibashi's model itself can also be 
classified with the use of CS gauge theory on orbifolds. 

The only difference between the two worldsheet orbifold models as defined by (4.1) and 
(4.13) is a 772 twist, 

[ J ® J )  --> ( -1 )  2 j l j ® j ) .  (4.14) 



P Ho(ava/Journal ofGeometr 3' and Physics 21 (1996) 1-33 23 

If taken as a 7/2 orbifold action in the SU(2) WZW model on closed oriented surfaces, 
this 7/2 twist turns the SU(2) model into an SO(3) WZW model. According to [19], the 

SO(3) WZW model corresponds to the SO(3) CS gauge theory on manifolds. This gives 

us actually a clue about the CS gauge theory for Ishibashi's model. To follow this clue, we 
consider the SU(2) CS gauge theory, but now we build in the 7/2 twist difference between 

(4.1) and (4.13) by fusing each component of the singular locus with the Wilson line that 
carries the "algebra-extending" representation of spin ¼k. 

To confirm that the CFT corresponding to this peculiar CS gauge theory is indeed the 

model discovered by Ishibashi, we will quantize the theory on Oc × ~. In accord with its 
definition, our theory now allows for just those holonomies h around singular points that 

square to minus one as elements of SU(2). Consequently, the singular locus can carry just 

one representation, of spin ¼k. We can infer the spectrum on the thickened open string from 
the SU(2) fusion rules (3.14) of the relevant representations carried by the two singular 
points of Oc:  

[4~k/z] x [~Pk/4] : Z [q~J]' (4.15) 
j~Yk/2 

in accord with the structure of Ishibashi's model. 

5. More examples: Chern-Simons orbifoid zoo 

Moore and Seiberg conjectured an appealing classification [ 19] claiming that every CFT 
(or at least target orbifolds and cosets) can be incorporated into the CS approach to CFT. In 

the orbifold case, the relevant CS gauge theories are those with multiply connected gauge 
groups (for orbifolds leading to extensions of chiral algebra), and with disconnected gauge 

groups of the structure G ~g G, where the orbifold group G acts on G via automorphisms. It 
would be nice to have a similar classification for worldsheet orbifolds as well. 

Before approaching this issue, it will be instructive to extend the class of examples 
discussed so far. Up to now, we have studied CS theory with non-abelian gauge groups that 

lead to WZW models; in this section, we will study c = I CFTs and orbifolds thereof. The 
structure of these models will clarify the question of how exotic worldsheet orbifolds can 

be described via CS gauge theory. This question is not only interesting in itself, but also 
provides some hints about the incorporation of worldsheet orbifolds into the classification 

given by Moore and Seiberg. 

5.1. U ( 1 ) T h e o l .  and c = 1 worldsheet  orbifolds 

CFTs with c = 1 correspond to U(1), or rather to 0(2),  CS gauge theory [19]. The 
U(1) CS gauge theory is an example of the theory with a multiply connected gauge group, 
and thus corresponds to CFT with an extended chiral algebra, the chiral algebra of the 
rational torus [ 19]. Let us first recall some basic facts about the rational torus. This model 
corresponds to strings in one target dimension X, X =-- X + 2rr R. For any value of R, this 
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model has the U(1) Kac-Moody symmetry. In our normalization and notation, the U(1) 

primaries are 

dPm,n(Z,-~) = exp{pL XL(Z)} exp{pRXR(2)}, (5.1) 

with left- and right-momenta 

( 2 ~  m ) (PL, PR)~ .... = + nR,  ~-~ -- nR  , m, n ~ 7/. (5.2) 

For rational values of 2R 2, say p / q ,  ~p,q be come chiral, and extend the chiral current 

algebra of U(1) to the chiral algebra of the rational torus generated by exp{i 2x/~NXL(z)} 
and aX(z), with N = pq.  The rational-torus CFT contains 2N primaries Jr of this chiral 

algebra: 

{ ir } 
q~r=exp ~ X ( z )  , r = 0 , 1  . . . . .  2N. (5.3) 

Diagonal modular invariants correspond to p or q equal to one. (See [19] for details.) 

Quantization of the U(1) CS gauge theory on O c  x R is quite analogous to the case of 
SU(2) theory we discussed above. At level N, the singular locus can carry any representation 

whose holonomy squares to one. We obtain two representations, namely 4~0 and 4~N. Fusing 
the representations carried by the two components of the singular locus according to fusion 

rules of the rational torus: 

[~br] x [~s] = [~br+s], r, s, r + s E Z2N, 

we get the Hilbert space of U(1) CS gauge theory on Oc:  

~ o ~  = 2 {[40] (9 [~U]}. 

(5.4) 

(5.5) 

In accord with our discussion in the previous sections, it should be isomorphic to the 
spectrum of open states of a c = 1 worldsheet orbifold. 

Worldsheet orbifolds of the (rational) torus were discussed in [4,7]. Motivated by the 
conjectured correspondence with CS gauge theory, we are mainly interested in 7/2 orbifolds 
of models with diagonal modular invariants. There are essentially two such (classes of) 

models of importance to us, one standard and one exotic. The standard one uses the world- 
sheet parity group as the orbifold group, and the exotic one supplements the parity action 
by the target reflection, 

X w+ - X .  (5.6) 

(For details, see [4,7].) These two models are dual to each other, i.e. they are isomorphic up 
to redefinition R --+ 1 /2R of the target radii. These two dual pictures of the same system 
can be used to shed some light on each other. In particular, we have a simple geometrical 
interpretation of the spectrum of open states of the model [7]: open strings are (hal0-winding 
states with their ends sitting in either of the two fixed points of the orbifold involution (5.6). 
In particular, this simple picture elucidates the structure of the (Chan-Paton) degeneration 
of the open strings in the model, which is now related to the existence of two fixed points of 
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(5.6). As we are now going to see, these results can be reproduced from quantization of  CS 

gauge theory on orbifolds, where the Chan-Paton degeneration comes from different ways 

in which one representation can be obtained by fusion of  the Wilson lines that represent the 

string boundaries in CS gauge theory. 

Let us first consider the "standard" c = 1 worldsheet orbifold at R 2 = I / 2 N ,  which 

corresponds to a diagonal modular invariant of  the orbifold model. The open spectrum of 

the model contains states with momenta 

m m 2~/2N 
7_ - -  (5.7) 

P o p e n  - -  2R 2 

The spectrum can be decomposed into two irreducible representations of  the symmetry 

algebra of  the orbifold model, depending on whether m is even or odd. These two repre- 

sentations are exactly the two representations of (5.5). Consequently, the U(1) CS gauge 

theory on orbifolds as discussed in (5.5) corresponds to the "standard" c = 1 worldsheet 

orbifold at radius R = 1/24'-2N. In particular, the factor of  two in front of  the right-hand 

side of (5.5) gives the Chan-Paton degeneracy and counts the fixed points of (5.6) in the 

dual picture of  the model. 

At R 2 = ~ N, the spectrum of open states of  the standard worldsheet orbifold model 

carries momenta 
m m 

P o p e n  = - -  = , ( 5 . 8 )  
2R x/2N 

and can be decomposed into 2N representations of  the symmetry algebra of the model. To 

get a CS gauge theory description of  this region of  large target radii, we will proceed in 

analogy with the analysis of  the SU(2) worldsheet orbifoids in the previous section. We 

know from the duality mentioned above that we are looking in fact for a CS interpetation 

of  the exotic worldsheet orbifold at R 2 = I / 2 N .  Thus, we will construct a new U(I)  CS 

gauge theory on orbifolds as follows. We supplement the 7/2 action on manifolds by a ?72 

twist, which is a CS analogy of  the target transformation (5.6): Over the singular locus, we 

extend the orbifold group to 0(2)  = 7/2 ~ U( I )  and allow only those holonomies that do 

not belong to the U(1) subgroup in 0(2) ;  all other holonomies take values in U(I) .  This 

prescription defines a gauge theory, in which the singular points of  Oc are now labeled by 

twisted primaries of  the chiral algebra of  the 7/2 (target) orbifold [6]. Using the relevant 
fusion rules: 6 

[ail × lcril = I l l  + [4~1 + ~ [~br], 
r e v e n  

[ri] × [ri] ---- [ 1 ] + [ ~ b ~ ] +  E [~br], 
r even 

[cri] × [ri] = [ j ]  + [¢~v+ll + ~ ]l#r], 
r e v e n  

]a l l  × 1o21 = )--~ [4~rl, 
r odd 

[r l ]  x [r21 = )---~ [4~r], 
r odd 

[O'i] × ['t'i+l] = ~--~[¢r], 
r odd 

(5.9) 

and composing the result into representations of the rational-toms chiral algebra, one gets 
exactly the spectrum (5.8) of  the 2N representations of the standard worldsheet orbifold at 

6 Our notation here is that of 161. 
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R 2 = {-N, with a Chan-Paton degeneration of the open sector. Thus, the exotic worldsheet 

orbifold at small radius, or altematively the standard orbifold at large radius, corresponds 

to the twisted U( I )  CS gauge theory we have just constructed. 

Two interesting consistency checks can be made immediately. First, notice that using 

0(2)  as the gauge group on 3D orbifolds, one can easily recover the model that corresponds 

to open strings on target orbifold S l/7/2, which mixes in the obvious way the two c = 1 

models just discussed, producing simultaneously the 7/2-twisted closed states, as necessary. 

Secondly, notice that the compact boson at the self-dual radius, R ---- ½, can be reconstructed 

from each of  the two CS gauge theories presented above. It is reassuring that both descrip- 

tions give the same result. This closes our study o f c  ---- 1 worldsheet orbifolds via CS gauge 

theory. 

5.2. Discrete gauge groups 

Many crucial points of  the relation between CFTs on surfaces with boundaries and/or 

crosscaps (i.e. worldsheet orbifold models) on one hand and the 3D CS gauge theory on the 

other can be efficiently isolated by studying holomorphic orbifolds [6]. At the level of CS 

gauge theory, holomorphic orbifolds are described by discrete gauge groups [ 18,19]. 

Let us consider the CS gauge theory with an arbitrary finite gauge group G, on 7/2 

orbifolds. I will limit the discussion to the classical theory; quantization can be treated 

similarly as in [ 18], after a choice of  an element of  H4 2 (B(7/2, G), 7/) is made, to represent 

the choice of  a Lagrangian (see Appendix B). 

The phase space for canonical quantization on an orbifold O is given by the space of  flat 

principal G-bundles over O. On the thickened open string Oc,  flat principal G-bundles are 

classified by representations of  the fundamental group 7rl (Oc)  in the gauge group: 

7/2 * 7/2 --~ G. (5.10) 

This recovers the picture of  standard worldsheet orbifolds in two dimensions as discussed 

is Section 2.1: Flat G-bundles over Oc are in one-to-one correspondence with the mon- 

odromies (2.12) of  the fields on the open string, i.e. they are in one-to-one correspondence 

with the open twisted states of  a standard worldsheet orbifold (cf. Section 2). 

Exotic woridsheet orbifolds can also be obtained in a simple way. To construct the CS 
gauge theory corresponding to a (holomorphic) exotic orbifold with orbifold group G C 

x Z~ vs, we have to sum over a restricted class of  G-bundles over 7/2 orbifolds. This 

restriction corresponds to the commutativity restriction discussed in Section 2.1 (cf. (2. I 1)). 

Upon denoting by Go the set of  all the elements from G that act trivially on the worldsheet 
and thus represent a target orbifold group, G can be written as 7/2 ~ G0. Given now an 

orbifold O, its fundamental group zrl (O) has the structure of  a 7/2 extension of 7rl (O), 
the fundamental group of  its double cover O (which is, by assumption, a manifold). The 
allowed holonomies are now required to respect these 7/2 extensions on G and zG (O), i.e. 
they should make the following diagram commutative: 
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1 - +  7rl ( 0 )  ~ 2I" 1 ( 0 )  ~ 7/2 --~ 1 

$ $ $ id (5.11) 

1 --+ Go -+ G - - +  7/2 ~ 1 

This commutative diagram thus defines a variant of CS gauge theory, in which the gauge 

group is intertwined non-trivially with the action of the orbifold group 7/2. Hence, the exotic 
holomorphic worldsheet orbifolds can be given a three dimensional CS description, with 

the exact form of the allowed holonomies is encoded in the requirement of commutativity 

of(5.11 ). I will speculate on the nature of this exotic version of gauge theory in Section 5.3. 

5.3. Gauging a mapping class group 

In Sections 5.1 and 5.2 we have seen examples of worldsheet orbifold CFTs whose 
corresponding CS gauge theories apparently intertwine in a non-trivial way the gauge group 

with the action of the orbifold group Y2. For example, the CS gauge theory that was shown 
to correspond to (5.8) is neither an 0(2) gauge theory, nor a U(I)  theory on 7/2 orbifolds, 
since the holonomies around singular points are treated differently from the holonomies 

around the non-contractible circles of the conventional manifold origin. I will now argue 

that the proper way how to interpret such a theory is to think of 7/2 as a part of the gauge 
group, in a very specific sense that amounts to gauging the Z2 as a part of the mapping class 

group of the underlying manifold. 
Before discussing the construction, however, I will present yet another heuristic argument 

that ~vs should be treated as a part of the gauge group. It is shown in Appendix B that 

consistent Lagrangians for CS gauge theory on 7/2 orbifolds are classified by elements of 

the fourth 7/2 equivariant cohomology ring H42 (B(7/2, G), 7/), where G is the original CS 
gauge group, and B(7/2, G) is tom Dieck's classifying space of principal G-bundles over 

7/2-manifolds. Recalling that 

H}2(B(7/2, G), 7/) = H*(B(7/2 z G), 7/) (5.12) 

(see Appendix B), it is easy to see that the right-hand side is exactly the object that classifies 

consistent Lagrangians for the gauge group 7/2 × G on manifolds. We might interpret this 

fact as a signal that the 7/2 group acting on manifolds has become a part of the gauge group. 
We are free to define a gauge theory that corresponds to the ideas presented above, as 

follows. In the standard construction of a gauge theory whose gauge fields correspond to 
connections A on a principal G-bundle, the functional integral that defines the theory on a 

given manifold M contains summation over all principal G-bundles on M: 

Z f DAe iS(a), (5.13)  Z(M) 
C) bundles.,4 

where .4 denotes the set of gauge equivalence classes of the connection, S(A) is a gauge in- 
variant Lagrangian, and a gauge fixing procedure which gives sense to the formal functional 
integral is implicitly assumed. In paricular, for finite gauge groups [ 18,33] this summation 
distinguishes the gauge theory from the theory with the discrete symmetry being just global. 
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We can now define the theory with a mapping class group gauged, as a simple extension 

of the construction just discussed. Let us consider a 7/2-extension of G, 7/2 ~ G. With this 
as a gauge group, the sum in (5.13) would run over all 7/2 ~g G principal bundles. Recalling 

that principal 7/2 ~ G bundles are spaces with free 7/2 ~ G actions, we will now modify the 
sum so as it will now run over all 7/2 ~ F-spaces that are F-free, but not necessarily Z2 ~ G- 
free. In other words, these spaces can be thought of as (total spaces of) principal F-bundles 

with a G-action on them. Thus, instead of summing over principal bundles classified by the 

classifying space B(G x G), which would correspond to the conventional 7/2 ~ G gauge 
theory, we are summing in the "exotic" version of gauge theory over the objects classified 

by tom Dieck's classifying space B(G, G). In this case, 7/2 acts on 3D manifolds as an 
element of their mapping class group, which explains the title of Section 5.3. The CS gauge 
theory on Z2 orbifolds as discussed in the previous sections confirms that this approach 
really makes sense, since the theory represents a concrete example of the formal definition 

of the "exotic" gauge theory. In particular, the CS gauge theories discussed in Sections 5.1 
and 5.2 are examples of gauge theories of this type. Hence, this extension of the standard 

definition of CS gauge theory allows us to add the CFTs of worldsheet orbifolds to Moore 

and Seiberg's list of 2D conformal field theories classifiable by their corresponding 3D CS 
gauge theories. 

6. Concluding remarks 

In this paper I have studied CS gauge theory on 3D 7/2 orbifolds. This theory is interesting 
not only because it satisfies the axioms of equivariant topological field theory [ 11 ], but espe- 

cially because it is intimately related to 2D CFT on surfaces with boundaries and/or crosscaps 
(the so-called "worldsheet orbifold" CFTs). This relation gives us new insight into several 
aspects of open-string theory; it may also have implications for the boundary conformal 

scattering in two dimensions, a problem that itself has many interesting ramifications [ 13]. 
We have seen that the 2D and 3D aspects of CS gauge theory on orbifolds illuminate 

each other in an interesting way: 

For one, the 2D description of 2D CFT reveals the geometrical origin of the Chan-Paton 
mechanism (responsible for the existence of space-time Yang-Mills gauge symmetry in 

open-string theory). From this point of view, the rationale for the existence of the Chan- 
Paton symmetry is in 3D algebraic topology, namely in the existence of twisted principal 
G-bundles of the corresponding CS gauge group G (not to be confused with the resulting 
Chan-Paton gauge group) on 3D 7/2 orbifolds. Moreover, our interpretation of the open- 
string boundary as a link of Wilson lines in CS gauge theory leads to a surprisingly simple 
prescription for the identification of open string spectra in 2D CFTs, in terms of fusing 
specific Wilson lines in CS gauge theory. 

On the other hand, the analysis of several specific 2D CFTs (related to the so-called 
"exotic worldsheet orbifolds") in fact suggests the existence of a more unified treatment for 
the 3D gauge theory, in which the original gauge group and the orbifold 7/2 group become 
two parts of a larger gauge group. Conceptually, this step can be considered an extension 
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of  the standard definition of  gauge theories. This extended class of  3D CS gauge theories 

then allows us to extend the classification results of  [19] to open-string theory, proving 

in particular that at least those open-string models that can be interpreted as worldsheet 

orbifold models in the sense of  Section 2 do fit into the general classification by Moore and 

Seiberg that uses 3D CS gauge theory to classify 2D CFTs. 

Note also that in this paper, we have constructed a quantum field theory on spaces with 

singularities. This might be particularly interesting when combined with studies of  2 + 1 - 

dimensional quantum gravity which can be formulated as CS gauge theory with a non- 

compact gauge group [23,28,32]. In fact, 2 + l-dimensional quantum gravity on orbifolds 

(not necessarily 772 ones) might give us an exactly soluble quantum theory with (mild) 

space-time singularities completely under control. In general, the effective equivalence 

between orbifold singularities and Wilson lines as seen in this paper may be considered 

a toy example of  the idea that black holes (represented by the singular locus in this toy 

example) have just as much of  hair as any particle [33], simply because the singularities are 

equivalent to a sum over Wilson lines that represent physical particles. 

This paper is just a small step towards the complete CS gauge theory on orbifolds and its 

full correspondence with 2D CFT on surfaces with boundaries and/or crosscaps. The reader 

undoubtedly noticed that I have frequently chosen the way of  smallest resistance instead 

of  considering the most general situation possible. Indeed, the focus of  this paper has been 

on the main line of arguments that leads as effectively as possible from CS gauge theory 

on orbifolds to CFTs of  worldsheet orbifolds, and allows us to discuss specific examples. 

Many interesting aspects of  the story had to be left out for future investigation. 

Appendix A. Geometry of 3D orbifolds 

The CS gauge theory is a theory of  (flat) connections on 3D "space-times". To be able 

to study the theory on "space-times" that are orbifolds, we need some basic elements of 

orbifold geometry. 
An n-dimensional orbifold is defined as a space modeled locally by factors of domains 

in liT' by discrete groups. More precisely, we will define an orbifold O as an underlying 

Hausdorff topological space X o  with a maximal atlas of  coverings by open sets {Ui }. If (,,9 

were a manifold, the Ui s would be open subsets in I1~ n. In the case of orbifolds, we associate 

with each Ui a discrete group Gi, such that Ui is a factor of  a domain Ui C R n by Gi, 

Ui = Ui/Gi.  (A.I) 

(To avoid some counter-intuitive cases, we require that Gi act on Ui effectively.) Maps 

between charts are required to respect the group action. 
For each point x in an orbifold Xo,  the smallest group Gi associated to a domain con- 

taining x is called the "isotropy group" of  x. The subset in Xo  of points whose isotropy 
group is non-trivial is called the locus of  singular points, or the "singular locus" of  (.9. 

To be able to define fibered bundles over orbifolds, a structure that we need in gauge 
theory, we must first define the notion of  morphisms between orbifolds. A "morphism" 
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from orbifold O to another orbifold O I is defined as a mapping f between the underlying 

spaces, f : Xo ---> Xo,, that respects the orbifold structure of (._9 and 01, i.e. it respects the 

group action in each coordinate chart. As a consequence, i fx  is an arbitrary point in O with 

isotropy group Gx and y = f (x) ,  then necessarily the isotropy group Gy of y contains Gx 
as a subgroup. 

This definition of  morphisms between orbifolds gives us a category of  orbifolds, in which 

such notions as covering maps, fibered bundles, homotopies between maps, homotopy 

groups, etc. can be straightforwardly defined. For example, the mapping that retracts the 

thickened open string Oc to the open string Os itself (see Fig. 2) represents a homotopy 

from Oc to Os (in fact, this map is a deformation retraction; for the definition of  the latter 

in the case of  manifolds, see e.g. [34]). This fact explains the observation made in the paper 

that the orbifold fundamental groups of  (.9c and Os are isomorphic. 

The category of orbifolds is very similar to the category of  G-spaces with G-equivariant 

maps as morphisms (here G is an a priori fixed finite group). For the purposes of  this paper, 

these two categories can be considered in many respects equivalent. 

Let us now proceed from the topology of  orbifolds to their geometry. We define a principal 

G-bundle for any (Lie) group G over an orbifold (_9 as follows. Let P be an orbifold fibered 

over an orbifold (_9 (i.e. the projection rr : 79 --+ O is an orbifold morphism), such that for 

each chart Ui on (.9 one is given a representation of  Gi in G, and for Ui from a sufficiently 

refined covering of  (.9, we have 

r r - I ( u i )  : (Ui × G)/Gi, (A.2) 

where the action of  Gi on Ui is that of  (A. 1), and the action on G is given by the representation 

of  Gi in G. Then 79 is what we can call the total space of  a principal F-bundle over (_9. 

To be more specific, let us illustrate the definition of  the principal bundle by classifying 

principal SU(2) bundles over our favorite orbifold Oc. To construct an SU(2) principal 

bundle over Oc, we have to specify a representation of  the orbifold group 7/2 in SU(2), 

over each singular point in Oc. There are two such representations possible, over each 

singular point. One of  them is trivial and maps 7/2 to the identity in SU(2), and the other one 

maps 7/2 to the center of  SU(2). These two representations represent two possible twists of  

a principal SU(2) bundle over a singular point of  Oc. One of  them gives a topologically 

trivial bundle over a vicinity of  the singular point, while the other one is "twisted," and 

effectively reduces the structure group over the singular point from SU(2) to SO(3). Note 

the amusing fact that in the twisted case, the total space of the principal bundle over a 
vicinity of  the singular point is a manifold, and the singularity of  the bundle is due to a 
singular projection to the base orbifoid Oc. 

Appendix B. Lagrangians of CS gauge theory on orbifolds 

In this appendix I present some technicalities of the definition of  CS Lagrangians for 
general (compact) gauge group, not necessarily connected or simply connected, on 3D 7/2 
orbifolds. The analysis follows closely the non-equivariant case discussed in [ 18]. 
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Regardless of what the gauge group is, the requirements of factorization in the theory on 

orbifolds make the Lagrangian S(A) on O zero if O is the boundary of a 4D/72 orbifold 

/3 assuming A can be extended as a flat connection over/3. First we will check whether 
there exists an obstruction for a 3D/72 orbifold to be the boundary of a 4D 7/2 orbifold. If 
such an obstruction existed, it would be an element of the third/72 equivariant cobordism 

group 13(/72) (see [35]). In general, 1,(7/2) is defined as the group of equivalence classes 
of/72 manifolds, two of them being equivalent if they bound a / 7 2  manifold. Using a split 
exact sequence [35], the cobordism group of our interest can be easily calculated, leading 

to 13(/72) = /72. Hence, there is a/72 obstruction for some 3D /72 orbifolds to represent 
the boundary of a 4D/72 orbifold, which indicates that the definition of Lagrangian must 
be treated carefully. To this goal, we will modify to the orbifold case the results of [18], 

where the Lagrangian for CS gauge theory on manifolds has been defined using group 
cohomology. 

Let us consider CS gauge theory on/72 orbifolds with a compact gauge group G, not 

necessarily connected or simply connected. In the case of the theory on manifolds, the 
principal bundles over a given manifold M are classified by homotopy classes of mapping 

of M to the "classifying space" BG, and the consistent Lagrangians are classified by the 
lburth cohomology group H4(BG,/7) [18]. 

For principal bundles over orbifolds, relevant classifying spaces were defined and studied 
by tom Dieck in [31 ] (see also [36]). His classifying space B(/72, G) has the property that for 
any principal F-bundle E over a manifold B with a/72 action on E and B commuting with the 

F-action on E, there exists a 7/2 equivariant mapping (unique up to/72 equivariant homotopy) 
of B to B(/72, G), which induces E on B from a universal bundle over B(/72, G). 7 I now 

claim that the consistent Lagrangians of the CS gauge theory on orbifolds are classified 
by elements of the fourth equivariant cohomology [37] of tom Dieck's classifying space, 

H42 (B(7 /2 ,  G) ,  7/). 

To show this, let us first compute the relevant cohomology group. As shown in [31 [, the 

classifying space B(G, G) is homotopic to the classifying space BG, once the action of G 

on B(G, G) is ignored. Thus, we can find a representant of BG such that G acts on it, and 

H42(B(/72, G),/7) = H~2(BG, 77). (B.I) 

With the use of the definition of equivariant cohomologies, we easily obtain 

H~2(B(/72, G),  7/) = H*( (BG x E7/2) /772,  7/) = H *( ( (E G /G )  x E7/2)//72, 77) 

= H*((EG × E/72)/(/72 x G), 7/) _-- H*(B(/T2 x G),/7). (B.2) 

Using now the Kinneth formula [38] for integral cohomologies, we get the following 

result for the fourth cohomology group of our interest: 

H~2(BG, W) = Ha(BG, 77) (~ H2(BG, 7/2) (~/72- (B.3) 

7 Ref. [31 ] discusses a generalization of this construction to the case of general semi-direct products G ~ a  G 
as well, i.e. to principal F-bundles with a G-action commuting with the F-action on the total space.up to a 
representation 0t of G in the group of G-automorphisms. The corresponding classifying spaces, denoted as 
B(G, or, G), are relevant to the ideas of Section 5.3 of the paper. 
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Let us now consider a principal bundle E over an orbifold O. Its double covering E over 

O is an example of  the objects classified by B(Y2, G). Let B is a four-manifold with the 

boundary O. Given a classifying map O --+ B(Y2, G) of  E,  there is an obstruction to 

extending it to an equivariant mapping B ~ B(7/2, ~) ,  given by the element y , [O]  of  the 

third 772 equivariant homology group H f  2 (B(7J2, G), 77). The torsion part of  this group is 

isomorphic by the universal coefficients theorem to the torsion o f / /42  (B(7/2, ~) ,  77) (see 

(B.3). Supposing for simplicity that the torsion of  H4(BG,  77) is 7/n, then 2n • X,[O] is 

homological ly trivial in B(772, G). We can thus define the Lagrangian on O by 

2n.  S(A) = ~ T r ( F / x  f ) ,  (B.4) 

P 

where 0 P consists of  2n copies of  (_9. A resolution of  the 2n-fold ambiguity of  this definition 

is then given, recalling that the form I2 --  (k/8zrZ)Tr(F /x F) is in the image of  the 

natural map H4z(B(77 2, {~), 27) ~ H4(B~,  ~), by any element of  the fourth equivariant 

cohomology of  B(7/2, ~)  as claimed above. 

To summarize, the consistent Lagrangians for CS gauge theory with gauge group G on 

7] 2 orbifolds are classified by the fourth 772 equivariant integer cohomology group of  the 

classifying space B(7/2, {~). For the purposes of  the present paper (cf. Section 5.3), the most 

relevant point is that this cohomology group is isomorphic to the fourth integer cohomology 

group of  the classifying space of  7/2 x G. 
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